![]() ![]() *** 科目 *** 数Ⅰ・A数Ⅱ・B数Ⅲ高卒・大学初年度 *** 単元 *** 数と式不等式二次関数二次不等式三角比三角比と図形集合・命題・証明順列・組合せ確率整数の性質 ※高校数学Ⅰの「2次関数」について,このサイトには次の教材があります. この頁へGoogleやYAHOO ! などの検索から直接来てしまったので前後関係がよく分からないという場合は,他の頁を先に見てください. が現在地です. ↓2次関数のグラフ(入門) ↓2次関数のグラフ[標準形] ↓平方完成の変形 ↓平方完成(演習) ↓同2 ↓展開形→頂点の座標 ↓同2 ↓同3 ↓同4 ↓同5 ↓2次関数→頂点の座標 ↓頂点の座標(文字係数1) ↓頂点の座標(文字係数2) ↓放物線の頂点を図で示す1 ↓放物線の頂点を図で示す2 ↓放物線の頂点を図で示す3(展開形) ↓2次関数のグラフの平行移動 ↓放物線の移動 ↓同2 ↓2次関数のグラフと係数の符号 ↓センター試験問題 2次関数 ↓2次関数の最大・最小(1) ↓同(2) ↓同(3) ↓同(4) ↓(t≦x≦t+1)のときの2次関数の最大値・最小値 ↓条件付2次関数の最大値・最小値 ↓2次関数のグラフと直線(文字係数) ↓解と定数の大小問題 ↓絶対値付き関数のグラフ |
【要点】
2次関数 y=a(x−p)2+q の頂点の座標は(p, q)です. x2の係数aは,頂点の座標に関係なく,放物線の形(下に凸:谷形,上に凸:山形)に関係しています. ![]() ![]()
【例1】
(解答)放物線y=2(x−3)2+4の頂点の座標を求めてください. 頂点の座標は(3, 4)です.
# x座標は符号が変えなければならないのに,y座標はそのまま読んで「ズルい」などと考えてはいけません.
y=x2のグラフをx軸の正の向きに3,y軸の正の向きに4だけ平行移動してできるグラフの方程式は y−4=2(x−3)2 なのですが,y=…という形でyについて解いた形が好まれるので,4を「移項した」ために,符号が変わっただけです. 元々は,y−4=2(x−3)2という形で,両方ともマイナスのときに「右へ」「上へ」移動します.
【例2】
(解答)放物線y=(x+5)2+6の頂点の座標を求めてください. 頂点の座標は(−5, 6)です.
頂点のx座標は,見かけの符号が..(x+5)2...となっているとき,符号を変えて読み取ります.頂点のy座標は,見かけの符号..+6のまま読み取ります.
aはどこに行った?などと質問しないように.係数が1になる場合は省略されています.
【例3】
(解答)放物線y=−2(x−1)2の頂点の座標を求めてください. 頂点の座標は(1, 0)です.
y=a(x−p)2+qにおいてp=1 , q=0とおけばよい.
公式と見かけが少し違うので,戸惑う人もいるかもしれませんが,この問題は比較的間違いが少ないです. 間違いが多いのは,次の【例4】の方です.
【例4】
(解答)放物線y=3x2+4の頂点の座標を求めてください. 頂点の座標は(0, 4)です.
y=a(x−p)2+qにおいてp=0 , q=4とおけばよい.
|
【問題】 次の2次関数の頂点を示しなさい.(頂点の場所をクリック)…10題あります.
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
■このサイト内のGoogle検索■ |