![]() ![]() *** 遘醍岼 *** 謨ー竇�繝サ�。謨ー竇。繝サ�「謨ー竇「鬮伜穀繝サ螟ァ蟄ヲ蛻晏ケエ蠎ヲ *** 蜊伜� *** 蠑上→險シ譏�轤ケ縺ィ逶エ邱�蜀�霆瑚キ。縺ィ鬆伜沺荳芽ァ帝未謨ー 謖�焚髢「謨ー蟇セ謨ー髢「謨ー蠕ョ蛻�荳榊ョ夂ゥ榊�螳夂ゥ榊� 鬮俶ャ。譁ケ遞句シ�謨ー蛻�貍ク蛹門シ上→謨ー蟄ヲ逧�クー邏肴ウ� 蟷ウ髱「繝吶け繝医Ν遨コ髢薙�繧ッ繝医Ν遒コ邇��蟶� 窶サ鬮俶�。謨ー蟄ヲB縺ョ縲梧焚蛻励阪↓縺、縺�※�後%縺ョ繧オ繧、繝医↓縺ッ谺。縺ョ謨呎攝縺後≠繧翫∪縺呻シ�
縺薙�鬆√∈Google繧ШAHOO ! 縺ェ縺ゥ縺ョ讀懃エ「縺九i逶エ謗・譚・縺ヲ縺励∪縺」縺溘�縺ァ縲悟燕謠舌→縺ェ縺」縺ヲ縺�k蜀�ョケ縺悟�縺九i縺ェ縺�阪→縺�≧蝣エ蜷医d縲後%縺ョ鬆√�蛻�°縺」縺溘′繧ゅ▲縺ィ蠢懃畑蝠城。後r隕九◆縺�阪→縺�≧蝣エ蜷医��御サ悶�鬆√r隕九※縺上□縺輔>��縲 縺檎樟蝨ィ蝨ー縺ァ縺呻シ� 竊�隕丞援諤ァ繧定ヲ九▽縺代k 竊�荳闊ャ鬆�↓諷」繧後k 竊�遲牙キョ謨ー蛻� 竊�遲画ッ疲焚蛻暦シ悟セェ迺ー謨ー蛻� 竊�蜥後�險伜捷ホ」 竊�蜷� (2) 竊�蜷� (3) 竊�ホ」險伜捷縺ョ螟牙ス「 竊�遲画ッ疲焚蛻励�ホ」-迴セ蝨ィ蝨ー 竊�縺�m縺�m縺ェ謨ー蛻励�ホ」 竊�髫主キョ謨ー蛻� 竊�Snan髢「菫ょシ� 竊�驛ィ蛻��謨ー蛻�ァ」 竊�遲牙キョテ礼ュ画ッ泌ス「縺ョ謨ー蛻励�蜥� 竊�鄒、謨ー蛻� 竊�閾ェ辟カ謨ー縺ョ邏ッ荵励�蜥� 繧サ繝ウ繧ソ繝シ隧ヲ鬨�.謨ーB.謨ー蛻� |
○ 正の整数の和 や正の整数の2乗の和や3乗の和 の公式を使うときは,どちらかと言えば機械的に公式を適用すれば答が得られます. ○ しかし,等比数列の和を表しているΣ記号から結果を求めるには,上のような機械的な当てはめだけでは無理で,
初項a,公比r,項数nの3要素に分けて読み取り,「等比数列の和の公式」
に代入するとできます.![]() ○ 等比数列の和といっても, のように,初項3,公比2,項数4が見ただけですぐ分かる形(an=a r n−1)になったものばかりとは限りません. など,さまざまな形で書かれる等比数列の和を求めるには,
(1) 初項a,公比r,項数nの3要素を「分けて読み取る」
という操作に慣れなければなりません.
![]() (2) 「上の公式(*)に代入する」 |
【例1】 次の和を求めてください.
(答案)
<等比数列の3要素を読み取る>
![]() ![]() ![]() ![]() 2n+1−2 と書いてもよい
(別解)
と変形して,初項a=2,公比r=2,項数nを読み取ってもよいが,この教材では数学が不得意な人を念頭に置いているので,このような器用な変形は薦めない. 特に,an=a r n−1のn−1が嫌な形をしており,覚え にくいと考えられる. |
【例2】 次の和を求めてください.
(答案)
<等比数列の3要素を読み取る>
![]() ![]() ![]() ![]() ![]() |
【例3】 次の和を求めてください.
(答案)
<等比数列の3要素を読み取る>
![]() ![]() ![]() ![]() ![]() ![]() |
![]() ○左辺に等しいものを右辺から見つけなさい. ○左辺から1つ選び,続けて右辺から1つ選びなさい.合っていれば消えます.間違えば消えません. ○間違った場合は,下にHELPボタンが出ます.HELPを読む場合でも読まない場合でも,新たに問題を選択すれば解答を再開できます. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]()
○k=1を代入すると,初項a=22=4
○k=1, 2, 3, ..を順に代入すると
○1からnまでだから項数はn ⇒以上から, ○k=1, 2, 3, ..を順に代入すると
○1からn−1までだから項数はn−1 ⇒以上から, ○k=1, 2, 3, ..を順に代入すると
○1からnまでだから項数はn ⇒以上から, ○k=1, 2, 3, ..を順に代入すると
○1からn−1までだから項数はn−1 ⇒以上から, ○k=1, 2, 3, ..を順に代入すると
○1からnまでだから項数はn ⇒以上から, ○k=1, 2, 3, ..を順に代入すると
○1からnまでだから項数はn ⇒以上から, ○k=0, 1, 2, ..を順に代入すると
○0からnまで(1からnまでよりも1つ多い)だから項数はn+1 ⇒以上から, ○k=1, 2, 3, ...を順に代入すると
○1からn−1まで(1からnまでよりも1つ少ない)だから項数はn−1 ⇒以上から, ○k=2, 3, 4, ...を順に代入すると
○2からn−1まで(1からn−1までよりも1つ少ない)だから項数はn−2 ⇒以上から, (2n−4でもよい) ○k=0を代入すると,初項 ○k=0, 1, 2, ...を順に代入すると
○0からn−1まで(1からn−1までよりも1つ多い)だから項数はn ⇒以上から, |
![]() ![]() |
■[個別の頁からの質問に対する回答][Σ等比数列について/17.7.22]
等比数列の和の公式について質問させてください。
先生のページでは、項比rから-1するという形になっていますが、
別の書籍等では、1から項比rをマイナスするという形になっているものもあります。
この違いは何に起因するのでしょうか?
ご教示ください。
■[個別の頁からの質問に対する回答][等比数列の和について/17.6.14]
=>[作者]:連絡ありがとう. と とは等しいので,どちらで表してもかまいません.(分母と分子の両方に -1を掛ける[全体には1を掛けることになる]と分数としては等しい) あえて言えば,生徒が自然に感じる(したがって,計算間違いしにくい)方を使うようにしているだけでしょう. 数学ⅡBの段階では有限数列しか登場しないから,和の公式からさらに変形する場合でも符号を間違わないように最高次の係数を正にして が好まれるでしょう.これに対して,数学Ⅲでは無限等比級数の和も扱うので を使って とする方が自然に見えます. でももちろん「正しい」のですが,こちらを好む人は少ないでしょう. 素晴らしい よく理解できた 練習問題のなんいとまをもう少しあげてもいいと思う
=>[作者]:連絡ありがとう.さらに進んだものはこの頁など |
髫ィ�ス�ソ�ス驍オ�コ髦ョ蜻サ�ソ�ス驛「�ァ�ス�オ驛「�ァ�ス�、驛「譏懶スコ�・�ス�ス驍オ�コ�ス�ョGoogle髫カツ隲幢ソス�ス�エ�ス�「髫ィ�ス�ソ�ス |