PC用は別頁

ベクトルの内積
[解説]
● ベクトルのなす角
2つのベクトルの始点を原点Oに重ねて,とするとき,∠AOB=θをベクトルののなす角という。ただし,0°≦θ≦180°とする。

● ベクトルの内積の定義

2つのベクトルのなす角をθとするとき,ベクトルの内積を次の式で定義する。

・・・(1)
・・・(2)

上の定義において,(1)は矢印で表される図形ベクトルに対応し,(2)は成分表示に対応します.
のようにそれぞれのベクトルの左右を絶対値記号で囲んだものは,ベクトルの大きさ(長さ)を表します.
高校の教科書では,初めに矢印を使ってベクトルを図形的に導入しますので,(1)を定義として(2)を結果とします.
しかし,このページの少し後の方(※)に書いていますように,成分で表したベクトルを先に習った場合,(2)を定義として(1)をその性質とすることもできます.
1. 図形で表されたベクトルの内積
図1
【例】
図1の場合
と読み取ります.
次に,これら2つのベクトルの始点が重なっていることを確かめます.
始点が重なった状態で,2つのベクトルのなす角はθ=60°だから

とします.
数学Tで習った三角比の値を使って,結果を次のようにまとめます.

図2
図2の場合
と読み取ります.
次に,これら2つのベクトルの始点が重なっていることを確かめます.
始点が重なった状態で,2つのベクトルのなす角はθ=90°だから

とします.
数学Tで習った三角比の値を使って,結果を次のようにまとめます.

この例では,の値は全く利用されていません.
すなわち,だから,2つのベクトルの大きさ(長さ)が何であっても,垂直な2つのベクトルの内積は0になります.
この結果は,ベクトルを習うときに何度も登場します.
図3
図3の場合
と読み取ります.
次に,これら2つのベクトルの始点が重なっていることを確かめます.
この問題で2つのベクトルのなす角は0°だと考えてはいけません.ここまでの例で,始点を確かめる話は,何の役に立っているのか?と疑問に思う人もあるかもしれませんが,始点を重ねると2つのベクトルのなす角が180°だと分かります.
始点が重なった状態で,2つのベクトルのなす角はθ=180°だから

とします.
数学Tで習った三角比の値を使って,結果を次のようにまとめます.

一般に,が零ベクトルでないとき,は大きさ(長さ)だから,つねに

が成り立ちますが,のとき

だから

になります.
すなわち,2つのベクトルのなす角が90°よりも大きいとき(鈍角のとき),内積は負の値になります.

≪例≫
 図形で表されたベクトルの内積を求めるには,
(1) 2つのベクトルの大きさ(=長さ)を求める
(2) 2つのベクトルのなす角θを求めてを求める
(3) 定義に従って,に当てはめる
これだけです.
 ただし,2つのベクトルのなす角を求めるときに,上で述べた図1〜図3のように始点がそろっているときはそのまま測れますが,次の図4〜図6のように始点がそろっていないときは
「始点がそろうように移動させてから測ること」
「角度は0°≦θ≦180°で求めること」
に注意が必要です.
図4
(1)
(2)
(3)
…(答)

図5
(1)
(2)
(3)
…(答)

図6
(1)
(2)
(3) …(答)


《問題》=== 図形で表されたベクトルの内積 ===
 左から問題を選び,次にその答を右から選びなさい.なお,次の余弦の値を参考にしてよい.
[ルール]
○「左から問題を一つクリック」し,続けて「右からその答をクリック」すると消えます.間違えば消えません.
○間違った場合,下に参考答案が出ます.

















2 成分で表されたベクトルの内積
≪定義≫
 成分で表されたベクトルの内積を求めるには,
(1) 2つのベクトルの対応するx成分同士,y成分同士の積を求める

(2) それらの和を求める

これだけです.
≪例≫
のとき

のとき

##簡単な話に見えますが,間違う生徒は多い##
◎内積の正しい計算(相方と掛け合う)
(1, 2)(3, 4)のとき
1×3+2×4
××内積の間違った計算(自家受粉になっている)
(1, 2)(3, 4)のとき
1×2+3×4

《問題》=== 成分で表されたベクトルの内積 ===
 次の2つのベクトルの内積を求めなさい.
(正しいものを下から選べ)
(1) 
−4 −3 −2 −1 0 1 2 3 4 5
(2) 
−4 −3 −2 −1 0 1 2 3 4 5
(3) 
−4 −3 −2 −1 0 1 2 3 4 5
(4) 
−4 −3 −2 −1 0 1 2 3 4 5
(5) 
−4 −3 −2 −1 0 1 2 3 4 5

※少々込み入った話…たぶんためになるが,混乱しそうなら読み飛ばしてもよい
≪なぜベクトルの内積をと定義するのか?≫
 この話は,高校の数学の教科書を何冊か見ても明確に書かれたものはなく,自分が高校で教えていたときも踏み込んでしまうと相手によっては余計に混乱してしまうおそれのであえて触れなかった.
 はじめて習うときには,「なぜでなくてなのか」「そもそもなぜそのように定義するのか」「そんな不自然な定義をしてどんな使い道があるのか」など疑問を持つことがある.(この段階ではまだエネルギーや力積は習っていない)
 筆者が高校生のときは,頭ごなしにだと言われると,わだかまりがあって勉強がしばらく停滞した覚えがあるので,高2段階でそれなりに納得のいく説明を試みる.
 本当は,成分表示において,
(積の和)…(1)
のように定義すると,3次元になっても,4次元になっても,いろいろと使えるので(1)になるようにしたいというのが本音です.そこで,(1)になるようにするには
…(2)
のように定義する必要があるのです.
 まず,のとき,右図のように直角三角形を書いて三平方の定理を思い出すと分かるように,
…(3)
…(4)

 次に,右図のような三角形について余弦定理を思い出すと
…(5)
だから
…(6)
これを(5)を使って成分で表すと


簡単にすると
…(7)
(3)を用いて(7)の右辺を表すと
…(8)

 以上のように,ベクトルの内積を(1)のように成分で定義すると,(2)のようにになるのです.
 教科書では,通常,内積について(2)のように図形的に定義し,成分に直す方法は後から教えるので,上のような説明を行う機会は少ない.
 ベクトルを図形から定義すれば,数学・理科以外での使い道が分からなくなるが,成分で定義すれば列になったデータは何でもベクトルと見なせる.今日では,生徒は4次元,5次元どころか数十,数百次元のデータでも普通に処理しており,それがベクトルで,各成分の積の和が内積なのだと言えばもっと関心を持ってもらえるかもしれない.
 価格個数
商品15457
商品28686
商品310850
商品427031
商品536740
商品654018
 合計48644
左の表において,
価格は(縦に読む)6次元のベクトル,
個数は(縦に読む)6次元のベクトルで,
その内積(積の和:Excelで言えば=SUMPRODUCT( ))が合計の売上高を表します.
※統計では,数学とはちょっと違って「上端の表題をベクトルの名前」とし,特に→を付けずに日本語漢字,ひらがな何でもありで「ベクトルの名前」に使います.
この例では(価格)·(個数)は内積になり,48644です.



...(携帯版)メニューに戻る

...(PC版)メニューに戻る

■[個別の頁からの質問に対する回答][ベクトルの内積について/17.1.16]
いやー時代が変わりましたね。素晴らしいの一言です。私は第2世代ベビーブームの薬剤師です。 人生をやり直した気持ちでやってみました。今後もっともっと素晴らしいサイトを構築してくださいませ。
=>[作者]:連絡ありがとう.
■[個別の頁からの質問に対する回答][ベクトルの内積について/16.11.15]
左と右から選んで消していく問題について、誤タップから選択を消す方法がないので、再度タップすると選択中の赤枠が消えるなどあると使いやすい。
=>[作者]:連絡ありがとう.問題の選び直し(=いわゆる迷い箸のようなもの)については考えておきます.