PC用は別頁
※旧教育課程の高校数学Cに含まれていた「行列」について,このサイトには次の教材があります.
この頁へGoogleやYAHOO ! などの検索から直接来てしまったので「前提となっている内容が分からない」という場合や「この頁は分かったがもっと応用問題を見たい」という場合は,他の頁を見てください.  が現在地です.
行列の記号と用語
行列の相等,和,差,実数倍
行列の積
行列の計算(まとめ)
行列の乗法の性質-現在地
零因子
行列のn乗
行列のn乗(2)
行列のn乗(3)
逆行列
ケーリー・ハミルトンの定理
ケーリー・ハミルトンの定理(2)

== 行列の乗法の性質 ==

行列の積が定義できるとき,一般に
1 (積に関する) 結合法則が成立します。
(AB)C=A(BC)
 型については,
×型][×型][×型]→[p×s型]
となります。(しりとりのルールです。)
2 (和の上への積の) 分配法則が成立します。
(A+B)C=AC+BC
C(A+B)=CA+CB

※ 数字でも行列でも,積の上へ和は分配的ではありません。(分配法則は決して当たり前のことではありません。)

(a × b) + c  (a + c) × (b + c)
(A × B) + C  (A + C) × (B + C)
結合法則が成立する例:
に等しい。
※ 結合法則や分配法則の成立を一般的に示すには,行列の型に応じて,成分の数だけ両辺を比較する「息の長~い計算」をします。(略)

左右の位置を入れ替えても積が定義できる場合について,
[重要] (積に関する) 交換法則は成立しません。
すなわち,AB=BAは必ずしも成立しません

※ 交換法則が成立するとは,「すべてのA,Bについて,AB=BAが成立する」ということで,1つでもAB≠BAとなる例があれば,交換法則は成立しないといいます。
したがって,交換法則が成立しないという主張にとって,AB=BAとなる例が幾つあっても関係ありません。

 たとえ話による解説:
「この部屋にいるのは全員男子である」という主張が間違っていることを示すには,「この部屋に少なくとも1人は女子がいる」ことを示せばよく,「この部屋にいるのが全員女子である」ことを示す必要はありません。

※A,Bが正方行列でないときは,積の型が異なるためAB≠BAは自明です:
→ [3×2型][2×3型]=[3×3型]になります。
→ [2×3型][3×2型]=[2×2型]になります。

【要約】
 積が定義できるとき
「交換法則:×」,「結合法則:」,「分配法則:

※行列の積については交換法則が成り立たないので,中学校以来慣れてきた文字式の変形を不用意に行わないように,細心の注意を払わなければならない.

ただし,何もできない訳ではなく,次に示すようにできる場合もあることもまた覚えておかなければならない.
2×2行列の積について,交換法則が成り立つ場合の例

(1) ある行列Aと単位行列E,零行列0は交換可能
(abcd)(1001)=(1001)(abcd)=(abcd)
だから,AE=EAはつねに成り立つ

(abcd)(0000) =(0000)(abcd) =(000)
だから,A0=0Aはつねに成り立つ
(2) ある行列のべき乗Amとべき乗Anは交換可能
AA2=A2A=A3 や A23=A32=A5のように1つの行列のべき乗はつねに交換可能
(3) 対角行列Aと対角行列Xは交換可能
対角行列の積は,対応する対角成分の積で求められます
(a00b)(x00y) =(ax00by)
(x00y)(a00b) =(ax00by)
だから,対角行列の積について,AX=XAはつねに成り立つ


[問題]
 2×2行列について,任意の行列をA,B,C,単位行列をEとするとき,次のうちで正しいものを選んでください.
(ただしいものをクリック)
(1)
 (A+B)2=A2+2AB+B2

(2)
 (AB)2=A22
(3)
 (AB)C=A(BC) は
(4)
 (A+B)C=AC+BC は

(5)
 (A+B)(A-B)=A2-B2

(6)
 (A+E)2=A2+2A+E は


...(携帯版)メニューに戻る

...(PC版)メニューに戻る

笆�縺薙�繧オ繧、繝亥�縺ョGoogle讀懃エ「笆�

笆ウ縺薙�繝壹�繧ク縺ョ蜈磯�ュ縺ォ謌サ繧銀無
縲� 繧「繝ウ繧ア繝シ繝磯€∽ソ。 縲�
… 縺薙�繧「繝ウ繧ア繝シ繝医�謨呎攝謾ケ蝟��蜿り€�↓縺輔○縺ヲ縺�◆縺�縺阪∪縺�

笆�縺薙�鬆√↓縺、縺�※�瑚憶縺�園�梧が縺�園�碁俣驕輔>縺ョ謖�遭�後◎縺ョ莉悶�諢滓Φ縺後≠繧後�騾∽ソ。縺励※縺上□縺輔>��
笳区枚遶�縺ョ蠖「繧偵@縺ヲ縺�k諢滓Φ縺ッ蜈ィ驛ィ隱ュ縺セ縺帙※繧ゅi縺」縺ヲ縺�∪縺呻シ�
笳区─諠ウ縺ョ蜀�〒�後←縺ョ蝠城。後′縺ゥ縺�〒縺ゅ▲縺溘°繧呈ュ」遒コ縺ェ譁�ォ�縺ァ莨昴∴縺ヲ縺�◆縺�縺�◆謾ケ蝟�ヲ∵悍縺ォ蟇セ縺励※縺ッ�悟庄閭ス縺ェ髯舌j蟇セ蠢懊☆繧九h縺�↓縺励※縺�∪縺呻シ趣シ遺€サ縺ェ縺奇シ梧判謦�噪縺ェ譁�ォ�縺ォ縺ェ縺」縺ヲ縺�k蝣エ蜷医��後◎繧後r蜈ャ髢九☆繧九→遲�€�□縺代〒縺ェ縺剰ェュ閠�b隱ュ繧€縺薙→縺ォ縺ェ繧翫∪縺吶�縺ァ�梧治逕ィ縺励∪縺帙s�趣シ�


雉ェ蝠上↓蟇セ縺吶k蝗樒ュ斐�荳ュ蟄ヲ迚医�縺薙�鬆��碁ォ俶�。迚医�縺薙�鬆�縺ォ縺ゅj縺セ縺�