PC用は別頁
※高校数学Ⅱの「高次方程式」について,このサイトには次の教材があります.
この頁へGoogleやYAHOO ! などの検索から直接来てしまったので「前提となっている内容が分からない」という場合や「この頁は分かったがもっと応用問題を見たい」という場合は,他の頁を見てください.  が現在地です.
複素数の定義・計算
同(2)
同(3)
同(4)
複素数の対称式,値の代入
複素数のいろいろな問題
共役複素数-現在地
2次方程式の解の公式
同(2)
解と係数の関係
判別式
二直線を表す方程式
剰余の定理
同(2)
同(3)
試験問題(剰余の定理)
因数定理
高次方程式
3次方程式の解と係数の関係
同(2)
1の虚数3乗根ω
実係数方程式,有理係数方程式

== 共役複素数 ==
a, bを実数とするとき,それぞれの複素数a+biに対して
a−bi
共役複素数といいます.

○要するに共役複素数とは,それぞれの複素数(a+bi)の実部(a)を変えずに虚部(b)の符号だけを変えたものです.
【例】
(1) 2+3iの共役複素数は2−3iです.
(2) 2−3iの共役複素数は2+3iです.

※(1)(2)の例から分かるように,α=2+3iの共役複素数がβ=2−3iのとき,βの共役複素数はαになります.(双子の兄弟のように対になっています)

(3) 3+4i2の共役複素数は34i2です.

※実部と虚部を分けて,複素数a+biの形にすると,32+42iの共役複素数が3242iということになりますが,上記の(3)の書き方でもよい.

(4) 純虚数5iの共役複素数は−5iです.
(5) 実数5の共役複素数は5です.

※「実部を変えずに虚部の符号だけを変える」ので,(4)(5)のようになります.
特に(5)から,実数の共役複素数はその実数に等しいと言えます.

○共役複素数の定義はたったこれだけで,この頁では与えられた複素数の共役複素数を言い当てるという簡単な問題だけを扱います.
○共役複素数を定義してそれを覚えさせるのなら,何か使い道があるはずですが,それがどう使われるのかということは,別の頁で扱います.

《問題》
 次のうち,各々の共役複素数を選びなさい.
○一つクリックし,続けて「共役複素数」をクリックすると消えます.
○間違えば消えません.ジョーカーが1枚含まれており,ジョーカーだけになれば終了です.

...(携帯版)メニューに戻る

...メニューに戻る

■このサイト内のGoogle検索■

△このページの先頭に戻る△
【 アンケート送信 】
… このアンケートは教材改善の参考にさせていただきます

この頁について,良い所,悪い所,間違いの指摘,その他の感想があれば送信してください.
○文章の形をしている感想は全部読ませてもらっています.
○感想の内で,どの問題がどうであったかを正確な文章で伝えていただいた改善要望に対しては,可能な限り対応するようにしています.(※なお,攻撃的な文章になっている場合は,それを公開すると筆者だけでなく読者も読むことになりますので,採用しません.)


質問に対する回答の中学版はこの頁,高校版はこの頁にあります