→ 携帯版は別頁
== 定積分:基本計算 ==
○ 定積分の計算をするときは,原始関数(不定積分から定数Cを取り除いたものを使えばよい)に上端,下端の値を代入して差を取ります。数IIでは多項式だけを扱い,不定積分には次の公式を使います。
の不定積分】
nが正の整数(1, 2, 3, …)のとき
…(1)
ただし
…(2)
一般に定数項の積分は
…(3)
(注)
の省略と決まっており,
などと間違ってはいけない.
(1)の不定積分を利用する定積分の計算の例


(2)の不定積分を利用する定積分の計算の例

(3)の不定積分を利用する定積分の計算の例


【問題1】 次の定積分を求めてください.(選択肢の中から正しいものを1つクリック)
(1)

(2)


(3)

(4)


【積分変数がx以外の場合】
を積分変数といいます.
○不定積分では関数が残るので,計算の結果は積分変数に依存しますが,定積分では原始関数に上端・下端の値を代入するので積分変数は計算結果に残りません。
○このように定積分では,積分変数を入れ替えても結果は変わらず,関数形と積分区間の上端・下端の値だけが重要です。
○積分変数が以外の文字であっても,同じように計算できます.「被積分関数と積分変数が同じ変数で書かれていること」だけが重要です.
【不定積分】
←別→
【定積分】
同じ



【問題2】 次の定積分を求めてください.(選択肢の中から正しいものを1つクリック)
(1)

(2)


(3)

(4)


【被積分関数が積の形になっているとき】
の内部 (被積分関数という) が積の形になって
いるときは,展開してから不定積分を求め,定積分を行います.
※別々に積分したものを後から掛けても,正しい結果になりません.
【要点】多項式は,展開してから積分する.
≪例1≫

≪例2≫

≪参考≫ 数学Uでは,「多項式は展開してから積分する」というのが基本ですが,発展学習として次の公式まで含める場合があります.(不定積分に関して)
 この公式は,数学U+数学Bの範囲では,数学的帰納法で証明できますが,数学Vでは合成関数の微分法もしくは置換積分の内容となっています.



【問題3】 次の定積分を求めてください.(選択肢の中から正しいものを1つクリック)
(1)

(2)


(3)

(4)

○==メニューに戻る